In
BCI

What is Brain-Computer Interface (BCI) and How Does it Work?

By  
Saman Nawaz
February 16, 2024
5 mins read

The idea of connecting the brain to technology has always fascinated researchers, and it has now become a reality thanks to recent advancements in neurology and engineering. Nexstem is an innovator in Brain-Computer Interface(BCI) technology, unlocking the true potential of human-machine interactions. Our mission is to revolutionize the industry of neuroscience, healthcare, gaming, and beyond through our comprehensive BCI ecosystem.


What is BCI

A Brain-Computer Interface (BCI) is a technology that facilitates direct communication between the brain and external devices, allowing for control or interaction without needing physical movement. BCI technology acquires brain signals, analyzes them, and translates them into commands relayed to output devices to carry out desired actions. It is often used for research and to enhance human cognitive or sensory-motor functions


BCI Applications

BCI has contributed immensely to various research fields, including medicine, neuromarketing, gaming, and beyond, revolutionizing how we interact with technology and unlocking new possibilities such as controlling devices through mere thought. For instance, in medicine, BCI has enabled groundbreaking experiments such as the one conducted by Dr. Miguel Nicolelis and his team at Duke University. They developed a BCI system that allowed monkeys to control robotic arms using only their thoughts, paving the way for potential applications in prosthetics for paralyzed individuals (Nicolelis et al., 2003). In neuromarketing, researchers have utilized BCI technology to measure consumers' neural responses to advertisements and products, providing valuable insights into consumer preferences and behavior (Vecchiato et al., 2010). In the gaming industry, companies like CTRL-labs have developed BCI-enabled devices that allow players to control video games using their brain signals, creating immersive gaming experiences (CTRL-labs, 2019). These experiments showcase the diverse applications and potential of BCI technology across different fields, highlighting its transformative impact on human-computer interaction.


How does BCI work?

The functioning of our brains is what enables BCI to operate. Our brains contain neural cells known as neurons, which are interconnected by axons and dendrites. Neurons become active whenever we move, feel, think, or recall anything. Small electric signals, traveling as quickly as 250 mph from neuron to neuron, facilitate these tasks. These signals are generated on the membrane of each neuron based on the potential ions carry. When these signals escape, they can be detected and interpreted by scientists. BCI technology captures these signals to enable communication between the brain and external devices, allowing for various applications such as controlling prosthetic limbs, typing on a computer, or even playing video games through thought alone.


EEG based BCI

EEG is one of the most rapidly developing technologies under BCI. An electroencephalogram (EEG) is a test used to evaluate the electrical activity in your brain, helping to detect potential problems with brain cell communication. Thanks to Hans Berger's discovery in 1924, EEG became possible. Since this discovery, additional brainwave types and their associated mental states have been identified. With BCI systems, users can operate an external actuator almost in real time via an EEG system. Through the use of EEG-based BCI equipment, a person might operate a computer or other device with just their thoughts, eliminating the need for typical computer operation techniques such as using their hands. These EEG devices can be used to track a subject's cognitive states such as emotions, concentration, and behaviors.


Conclusion

Brain-computer interface (BCI) technology represents an exciting frontier in human-machine interaction. Its potential to enhance accessibility, improve healthcare, and revolutionize entertainment is truly remarkable. As we continue to explore and refine BCI applications, it's clear that this technology can profoundly impact our lives in ways we have only begun to imagine. The progress made by companies like Nexstem in developing comprehensive BCI ecosystems is a testament to the boundless possibilities of merging neuroscience with engineering. With further advancements and widespread adoption, BCI has the potential to empower individuals and transform industries, making science fiction a tangible reality.Are you passionate about neuroscience, gaming, or healthcare? If you're an industry leader, researcher, developer, or enthusiast, join us in creating groundbreaking BCI applications and shaping the future of human-machine interactions.

Resources and further reading

Other Sources

BCI

What is Brain-Computer Interface (BCI) and How Does it Work?

Saman Nawaz
Author

The idea of connecting the brain to technology has always fascinated researchers, and it has now become a reality thanks to recent advancements in neurology and engineering. Nexstem is an innovator in Brain-Computer Interface(BCI) technology, unlocking the true potential of human-machine interactions. Our mission is to revolutionize the industry of neuroscience, healthcare, gaming, and beyond through our comprehensive BCI ecosystem.


What is BCI

A Brain-Computer Interface (BCI) is a technology that facilitates direct communication between the brain and external devices, allowing for control or interaction without needing physical movement. BCI technology acquires brain signals, analyzes them, and translates them into commands relayed to output devices to carry out desired actions. It is often used for research and to enhance human cognitive or sensory-motor functions


BCI Applications

BCI has contributed immensely to various research fields, including medicine, neuromarketing, gaming, and beyond, revolutionizing how we interact with technology and unlocking new possibilities such as controlling devices through mere thought. For instance, in medicine, BCI has enabled groundbreaking experiments such as the one conducted by Dr. Miguel Nicolelis and his team at Duke University. They developed a BCI system that allowed monkeys to control robotic arms using only their thoughts, paving the way for potential applications in prosthetics for paralyzed individuals (Nicolelis et al., 2003). In neuromarketing, researchers have utilized BCI technology to measure consumers' neural responses to advertisements and products, providing valuable insights into consumer preferences and behavior (Vecchiato et al., 2010). In the gaming industry, companies like CTRL-labs have developed BCI-enabled devices that allow players to control video games using their brain signals, creating immersive gaming experiences (CTRL-labs, 2019). These experiments showcase the diverse applications and potential of BCI technology across different fields, highlighting its transformative impact on human-computer interaction.


How does BCI work?

The functioning of our brains is what enables BCI to operate. Our brains contain neural cells known as neurons, which are interconnected by axons and dendrites. Neurons become active whenever we move, feel, think, or recall anything. Small electric signals, traveling as quickly as 250 mph from neuron to neuron, facilitate these tasks. These signals are generated on the membrane of each neuron based on the potential ions carry. When these signals escape, they can be detected and interpreted by scientists. BCI technology captures these signals to enable communication between the brain and external devices, allowing for various applications such as controlling prosthetic limbs, typing on a computer, or even playing video games through thought alone.


EEG based BCI

EEG is one of the most rapidly developing technologies under BCI. An electroencephalogram (EEG) is a test used to evaluate the electrical activity in your brain, helping to detect potential problems with brain cell communication. Thanks to Hans Berger's discovery in 1924, EEG became possible. Since this discovery, additional brainwave types and their associated mental states have been identified. With BCI systems, users can operate an external actuator almost in real time via an EEG system. Through the use of EEG-based BCI equipment, a person might operate a computer or other device with just their thoughts, eliminating the need for typical computer operation techniques such as using their hands. These EEG devices can be used to track a subject's cognitive states such as emotions, concentration, and behaviors.


Conclusion

Brain-computer interface (BCI) technology represents an exciting frontier in human-machine interaction. Its potential to enhance accessibility, improve healthcare, and revolutionize entertainment is truly remarkable. As we continue to explore and refine BCI applications, it's clear that this technology can profoundly impact our lives in ways we have only begun to imagine. The progress made by companies like Nexstem in developing comprehensive BCI ecosystems is a testament to the boundless possibilities of merging neuroscience with engineering. With further advancements and widespread adoption, BCI has the potential to empower individuals and transform industries, making science fiction a tangible reality.Are you passionate about neuroscience, gaming, or healthcare? If you're an industry leader, researcher, developer, or enthusiast, join us in creating groundbreaking BCI applications and shaping the future of human-machine interactions.

Resources and further reading

Other Sources